= DALLAS

P SEMICONDUCTOR

WA X1/

A/D and D/A CONVERSION/SAMPLING CIRCUITS BASESTATIONS / WIRELESS INFRASTRUCTURE
DIGITAL POTENTIOMETERS HIGH-SPEED SIGNAL PROCESSING

Jun 01, 2005

App Note 3557: "Stitch" Your Way Out of Logic-Analyzer Memory
Limitations

MATLAB® is a powerful tool that can be used to quickly analyze captured data from an analog-to-
digital converter (ADC) output. This application note demonstrates how to use MATLAB to avoid
limitations in the memory depth of logic analyzers. Three code-switching methods (basic,
advanced, and reverse) are described and compared. Results for all three methods are presented.

Introduction

Characterizing high-speed analog-to-digital converters (ADCs) requires that the digital output codes be captured and
analyzed. Limitations in the memory depth of logic analyzers frequently prevent capturing enough data points to create high-
resolution FFTs or accurate representations of INL/DNL graphs. A simple way to circumvent this problem is to concatenate
multiple sets of data with a mathematical tool such as MATLAB? (Figure 1). One drawback of concatenating data is the
large discontinuity, which is often present at the point between the two data sets. While the discontinuity makes little
difference for INL/DNL graphs, it will wreak havoc on a high-resolution FFT (Figure 2).

L - & < < oY o g &% F
LI L L #] L L3 & % " . @ " & @
& ® * * * " " " N " » 3 » » . M . . . »
'l ‘: ‘1 ‘l' " : ." : ." L '! I- -I : .I : : l- ':. :
S b =t e . L = e by "
Matrix A Matrix B
Matrix A Malrix B
" r " F-‘ “!‘ F-. .H '-.‘.‘ "*" -'-‘ '-.-' ".‘" ""' "' "
L] L L] - L L i L] & L] [L] - L L L] - L L] L
- L] L L] * L] L] L] L] L] I L] L] L] o L . - - L] -
® " L " . * - |* " # & # LY * -] L]
LI L L L a 4 L & & L LI LI]
b B k. E L W b L e &
Discontinuity
Final Concatenated Matrix

Figure 1. Concatenated data reveals discontinuity between two data sets.

10f12

http://www.maxim-ic.com/appnotes10.cfm/ac_pk/2/ln/en
http://www.maxim-ic.com/appnotes10.cfm/ac_pk/42/ln/en
http://www.maxim-ic.com/appnotes10.cfm/ac_pk/9/ln/en
http://www.maxim-ic.com/appnotes10.cfm/ac_pk/13/ln/en

FFT Plot {16384 Samples) - Continuous Sample

Amplitude (dB FS)
]

FFT Plot {16384 Samples) - Concatenated Sample

Amplitude (dB FS)

.Hh.nIlLi At gt b g Bkt 0k adi o ||Il.|Judn-.-r“|.“| ||f..i..k.i.l I

1 1.5 2

Frequency (MHz)
b)

Figure 2. a) A single 16384-point data set was captured and analyzed; b) two 8192-point data sets were captured,
concatenated, and analyzed. Stitching Techniques

One can eliminate discontinuities by searching for identical groups of points (typically three or four) in each data set, and
‘stitching’ the two data sets together at these points (Figure 3). The easiest way to accomplish this stitching is to record the
last four points in the first data set and then search for an identical set of points in the second data set. This position in the
second data set is called the 'stitch point.' Any data in the second data set that precedes this stitch point is discarded; the

remaining portion of the second data set is attached to the first. This technique is called Basic Code Stitching, is fairly
simple to implement, and executes very quickly in MATLAB.

20f12

Truncate Frant of !.-'atrix‘l_ﬂ
abch Points
Maiching Painls
Matrix A Matrix B
I'-*.I ii'it thll I“ lI 1“‘! i‘"ﬁ tht

Stitch
Final "Stitched” Matrix

Figure 3. Basic code stitching results in a final "stitched" matrix.

With basic code stitching, sometimes up to half of the second data set needs to be discarded in order to find a set of points
that match the last four points of the first data set. Alternatively, discarding a few samples at the tail end of the first data set
often helps to find a stitch point closer to the beginning of the second data set (Figure 4). However, looking for a match that
discards samples from the tail end of the first data set and the front end of the second data set can be difficult to implement.
This process is called Advanced Code Stitching. Finding the ideal stitching point that yields the largest resulting data set
requires considerable forethought and programming skill. But if implemented properly, advanced code stitching typically

yields a final data set that is at least 90% of the sum of the two smaller data sets.

3of12

Truncata Truncate
Back of Front of :
Matrix Makrix Matching Points

Maich Painls

Matrix A Matrix B
I‘I i‘l I’I I“l i‘l I“ I.I I“I
L | LI] LI LI & - * & &+ &

Stitch
Final "Stitched” Matrix

Figure 4. Advanced code stitching looks for ideal stitch points which result in a final "stitched" matrix.

Stitching the second data set (Matrix B) in front of the first data set (Matrix A) is called Reverse Code Stitching and may also
result in a larger data set (Figure 5). This technique, however, doubles the processing time because the stitch point must
be found when data set A precedes data set B, and when data set A follows data set B. In addition, reverse code stitching
typically yields minimal gains when combined with the other stitching techniques. Consequently, due to the substantial
increase in processing time required for reverse code stitching, the additional code gains may not be justified on a slower

PC. Table 1 details a comparison among the three code-stitching methods.

Matrix A Matrix B Matrix B Matrix A

Stitch Matrices / \ Stitch Matrices /

Stitched Matrix Reverse Stitched
Matrix

The largest Matrix is used

Final Matrix

4 0of 12

Figure 5. Reverse code stitching doubles processing time, often with minimal code gains.

Table 1. Stitch Technique Comparison Table*

Size of Final Data Set

Stitch Technique|Data Set Numbers % of two data sets Description

) (averaged) (averaged)

Will produce erroneous FFT; however,

0,
CIEAETE Ala Liien o0 INL/DNL can be extracted from this data.
Basic 11060 81921 14384 11212 68.4%
Reverse 11060 8192% 14384 11212 68.4%
Advanced 13790 16046 16022 15286 93.3% FFT is useable for calculating figures of
Advanced merit
+ 15427 16176 16022 15875 96.9%
Reverse

* Two 8K (8192 code) data sets were stitched together using the techniques described above. To ensure accuracy, the test was repeated
three times using four sets of 8192-point data (labeled 1 through 4). The resultant data from each test was averaged and is presented to
the right of the test data.

T Concatenation always yields 100% of the available data.

T Unable to stitch data sets together.

MATLAB Functional Description

The attached MATLAB code (StitchMatrices and FindStitchPoint in Appendices A and B, respectively) combines the above
topics into one easy-to-use function. These functions accept two data sets (single-column matrices in MATLAB) and several
input arguments that enable the advanced-/reverse-code-stitching features. The FindStitchPoint routine identifies offsets in
data sets A and B. The StitchMatrices routine discards and combines data sets A and B together using the offsets from the
FindStitchPoint routine. In addition, the stitch points in the final data set are recorded in the PrevStitchBins matrix for post-
processing. When stitching multiple data sets together, the PrevStitchBins preserves the location of the old stitch points.

Conclusion
Stitching two sets of data together can yield acceptable results. Figure 6 depicts the FFT plot of three 8192-point data sets

stitched together (five stitch points used) using the stitching techniques described above. The resulting FFT is almost
identical to the 16384-point continuous data set shown in Figure 2a above.

5o0f 12

FFT Plot (16384 Samples) - Stitched Sample

10 =

i) -

70 =

Amplitude (dB FS)
|

80

-0

-0 I||| |‘| l-

J 05 1 15 2 a5 3

Frequency (MHz)

Figure 6. Stitching codes together yields an accurate FFT plot.
MATLAB is a registered trademark of The Mathworks, Inc.

Appendix A: StitchMatrices Routine (StitchMatrices.m)

function [StitchedMatrix, StitchBins] = StitchMatrices(Mtri xA,
Matri xB, StitchNunber, PrevStitchBins, .
AdvCodeStit chEnabl ed, ReverseStitchEnabl ed);

%stitch Matrices Function

%Revision 1.0

%

%8By Donal d Schelle, May 2005

%vBaxi m | nt egrated Products

%420 San Gabriel Drive

¥sunnyval e, CA, 94086

%

% his function will take two nmatrices (MatrixA and MatrixB), find a

%i ven nunber (StitchNunber) of identical points in each and

%toncatenate the two matrices into one.

%

% nputs = MatrixA, MatrixB (Data Matrices)

% StitchNunber (Number of points to match)

% PrevStitchBins (Bins of Previous Stitches in MatrixA)
% AdvStitchEnabled (0 = NO 1 = YES)

% ReverseStitchEnabled (0 = NO, 1 = YES)

% ut put = StitchedMatrix (Matri xA + Matri xB)

% StitchBins (bins of StitchedMatrix where the two

% matri ces were joined.)

%

%f the matrices can not be joined the function will output a NaN
9% or both the StitchedMatrix variable and the StitchBi ns variabl e

%Check to see that there are at | east TWO StitchNunber Points
if StitchNunber < 2,

6 of 12

%Requested less than 2 stitch points
StitchedMatrix = NaN,
StitchBins = NaN;
return;
end;

%Cal cul ate Size of MatrixA and Matri xB
[Si zeA, Junk] = size(MatrixA);
[Si zeB, Junk] = size(MatrixB);

%-ind the Stitch Points in MatrixB
[Normal A, Normal B] = FindStitchPoint(MatrixA, MatrixB,
StitchNunber, AdvCodeStitchEnabl ed);
%Cal cul ate the size of the Normal Stitched Matri x
Normal StitchedSize = Nornmal A + SizeB - Nornal B + 1;

%Check to see if the reverse function is enabl ed
i f ReverseStitchEnabled == 1,
%-ind Stitch Points for Reverse Matrices
[ReverseB, ReverseA] = FindStitchPoint(MatrixB, MtrixA,
StitchNunber, AdvCodeStitchEnabl ed);
9%Cal cul ate the size of the Revered Stitched Matrix
ReverseStitchedSi ze = ReverseB + SizeA - ReverseA + 1;

el se
oset Values to defaults
ReverseStitchedSi ze = NaN, odvhtri xB/ A Stitch Size

Rever seA = NaN;
ReverseB = NaN,
end;

%Check to if it's possible to stitch two matrices
if isnan(Normal StitchedSize) & isnan(ReverseStitchedSize) == 1,
% he two matrices could not be stitched
StitchedMatri x = NaN;
StitchBins = NaN,
return,
end;

R Normal Matrix Stitching Routine ---------------
if (Normal StitchedSize >= ReverseStitchedSi ze) |
i snan(ReverseStitchedSi ze) == 1,
%Stitch MatrixB to the end of MatrixA
StitchedMatrix = cat(1, MatrixA(1l: Norrmal A), Matri xB(Normal B: Si zeB)) ;

%Jpdate Stitch Bins
if isnan(PrevStitchBins) == 1,

% here are no previous stitch bins

StitchBins = [Normal A, Normal A + StitchNunmber - 1];
el se

% here are previous stitch bins

%Check for Snipped Stitches

[SizeStitchBins, Junk] = size(PrevStitchBins);

while (PrevStitchBins(SizeStitchBins, 2) > (Normal A - 1)),
%5econd Bin is snipped frommtrix. Check if first bin is snipped.
if (PrevStitchBins(SizeStitchBins, 1) > (Normal A - 1)),
%-irst Bin is snipped too. Delete Bin Pair
PrevStitchBins = PrevStitchBins(1:(SizeStitchBins-1),:);

7 0of 12

el se
%-irst Bin is not snipped but second bin is snipped
shrink Stitch Size
PrevStitchBins(SizeStitchBins, 2) = Normal A - 1;
end;

oCal cul ate size of new PrevStitchBin Matrix
[SizeStitchBins, Junk] = size(PrevStitchBins);
end;

% nsert New StitchBins

[SizeStitchBins, Junk] = size(PrevStitchBins);
StitchBins = PrevStitchBins;
StitchBins(SizeStitchBins + 1,) = ...

[Normal A, Normal A + StitchNunmber - 1];

%Check to see if the last two stitches need to be conbined
[SizeStitchBins, Junk] = size(StitchBins);
if StitchBins(SizeStitchBins,1) == ...
(StitchBins((SizeStitchBins - 1),2) + 1),
%Conbi ne Stitches
StitchBins((SizeStitchBins - 1),2) = StitchBins((SizeStitchBins), 2);
%Ghorten StitchBin Matrix
StitchBins = StitchBins(1:(SizeStitchBins - 1),:);
end;

end;
end;

R L Reverse Matrix Stitching Routine ---------------
if (ReverseStitchedSize >= Normal StitchedSi ze) |
i snan(Normal StitchedSi ze) == 1,
Stitch MatrixA to the end of MatrixB
StitchedMatrix = cat(1, MatrixB(1l: ReverseB), Matri xA(ReverseA: SizeA));

%Jpdate Stitch Bins
if isnan(PrevStitchBins) == 1,
% here are no previous stitch bins
StitchBins = [ReverseB, ReverseB + StitchNunber - 1];
el se
% here are previous stitch bins
%Check for Snipped Stitches
while (PrevStitchBins(1,1) < (ReverseA + StitchNunmber - 1)),
%irst Binis snipped frommatrix. Check if second is snipped
if (PrevStitchBins(1,2) < (ReverseA + StitchNunmber - 1)),
%second Bin is snipped too. Delete Bad Pair
[SizeStitchBins, Junk] = size(PrevStitchBins);
PrevStitchBins = PrevStitchBins(2:SizeStitchBins, :);
el se
%second Bin is not snipped, but first bin is snipped
%shrink A d Stitch Size
PrevStitchBins(1,1) = ReverseA + StitchNunber - 1;
end;
end;

%X fset Stitch Bins by inserted anount
StitchBins = PrevStitchBins + ReverseB - ReverseA + 1;

8 of 12

%vhke Room for new StitchBins

[SizeStitchBins, Junk] = size(PrevStitchBins);
StitchBins(2:SizeStitchBins+l, :) = StitchBins;

% nsert New Stitch Bins

StitchBins(1l,:) = [ReverseB, ReverseB + StitchNunber - 1];

%Conbi ne cl ose stitches
if StitchBins(1,2) == StitchBins(2,1) - 1,
%Conbi ne Stitches
StitchBins(2,1) = StitchBins(1,1);
oshrink Stitch Bins Matri x
[SizeStitchBins, Junk] = size(StitchBins);
StitchBins = StitchBins(2:SizeStitchBins,:);
end;

end;
end;

Appendix B: FindStitchPoint Routine (FindStitchPoint.m)

function [QutputBi nA, Qut put Bi nB] =Fi ndStitchPoi nt(MatrixA, MatrixB,
Mat chNunber, AdvancedStit chFi ndEnabl ed)

%ind Stitch Points Function

%Revision 1.0

%

%8y Donal d Schelle, My 2005

%veaxi m | nt egrated Products

%420 San Gabriel Drive

Ysunnyval e, CA, 94086

%

% his function will find the IDEAL stitch point in Matrix B given

% he nunber of data points to match

%

% nputs = MatrixA

% Mat ri xB

% Nurmber of Records to Match

% Advanced Stitch Find Enabled (0 = NO 1 = YES)
%ut put = (QutputBinA) End Bin of MatrixA to stitch data

% (QutputBinB) Start Bin of Matrix B to stitch data

%
%f no bins are found, the function will output a NaN

%o argunent error checking to see if there is enough argunents
if nargin < 2,

% he user has not supplied enough argunents

di sp(' Function requires TWO Matrices');

Qut put Bi nA = NaN,
Qut put Bi nB = NaN,;
return;

el seif nargin < 3,
di sp(' Sel ect a nunber of points to match');

Qut put Bi nA = NaN,;
Qut put Bi nB = NaN,;
return,

el seif nargin == 3,
%Advanced code stitching is NOT enabl ed

9of 12

Qut put Bi nA = NaN,;
AdvancedSt it chFi ndEnabl ed=0;
end;

%Ensure that Matrix A and B are single RONmatrices
[row col] = size(MatrixA);

if row> col, MatrixA = Matri xA ; end;

[row col] = size(MtrixB);

if row> col, MatrixB = Matri xB'; end;

Y%eternmine Size of Matrices
[Junk, SizeA] size(Matri xA);
[Junk, SizeB] size(Matri xB);

Wnitialize QutputBinB to NaN (which nmeans that NO stitch points are found)
Qut put Bi nB = NaN,;

et initial size of BinA

Bi nA = Si zeA - MatchNunber + 1;

%Wnitialize BinStop Variable

Bi nStop = Si zeA-100;

%.o0p to search through Matrix B nunerous tinmes. This loop is only
%excuted once if Advanced Stitch Find is disabled. The loop will stop when
% he 'ideal' stitch point is found
whi |l e Bi nA > Bi nSt op,
ustuff the Match Nunbers into a separate Matrix
Mat chMat ri x = Matri xA(Bi nA: Bi nA+Mat chNunber - 1) ;

%-ind all bins in Matri xB that match the first nunber of the Match Matri x
Mat chedBins = find(MatrixB == MatchMatrix(1));

% Conpare the 2nd t hrough nth nunber of the Match Matrix with the
%pr ospective series of nunbers in MatrixB

9%Cal cul ate the size of the Matched Bins Matrix
[Junk, SizeMatchedBins] = size(MtchedBins);

% he advanced stitch node optim zes search time by elimnating
%ad stitch points that would result in the final concatenated
%ratrix being smaller than the |ast set of stitch points
i f isnan(QutputBinB) == 0,
%A Stitch Point exists froma previous run. Elimate bad stitch points
%Cal cul ate critical Stitch Point
Mat ri xSi ze = QutputBinA + (Si zeB-Qut putBinB) + 1;
CriticalBin = BIinA + SizeB - MatrixSi ze - 1;
% i nd maxi mum nunber in the MatchMatri x
BadBin = find(MatchedBins > Critical Bin);
%l imnate Bad Bins (if there are any)
if isenpty(BadBin) == 0,
Mat chedBi ns = Mat chedBi ns(1: BadBin(1) - 1);
end;
%Cal cul ate size of new Matched Bins Matrix
[Junk, SizeMatchedBi ns] = size(MtchedBins);
end;

% oop to cycle through initial nmatched bins

for i=1:Si zeivat chedBi ns,
oCheck to make sure that there isn't a Matri xB overrun

10 of 12

if (MatchedBins(i) + MatchNunmber - 1) > SizeB,
br eak;
end;

%Assune that next few codes will match and set StitchBi nGood = true
StitchBi nGood = 1;
%Wnitialize MatchMatri xCount er
Count = 1;
% ycl e through Matri xB and conpare Nunmbers with the MatchMatri x
for j=MatchedBins(i): (MatchedBins(i) + MatchNunber - 1),
if MatchMatri x(Count)==MatrixB(j),
%Nunber is good, continue and check next nunber
Count = Count + 1;
el se
%Nunber is bad, break [oop and try next sequence
StitchBi nGood = 0;
br eak;
end;
end;

if StitchBi nGood == 1,
% he optimal (first) stitch has been found
%Record the End bin of MatrixA
%Record the Start bin of MatrixB
Qut put Bi nA = Bi nA;
Qut put BinB = MatchedBi ns(i) + 1;
%Cal cul ate the size of the joined Matrix and a new Bi nSt op#
Bi nSt op = Qut put Bi nA- Qut put Bi nB+1;
br eak;
end;

end;

i f AdvancedStitchFi ndEnabl ed == 1,

%Advanced Stitch Find is enabl ed and we shoul d nake a new mat ch
%matri x and search for these nunbers
Bi nA = BinA - 1;

el se

%Advanced Stitch Find is disabled and we should end the | oop
br eak;

end;
end;

oCheck to see if NO Bins Mt ched

i f

i snan(Qut put Bi nB) == 1,
%NO Bi ns mat ched

Qut put Bi nA = NaN,

end;

More Information

11 0f 12

-- Full (PDF) Data
Sheet

-- Full (PDF) Data
Sheet

-- Full (PDF) Data
Sheet

-- Full (PDF) Data
Sheet

-- Full (PDF) Data
Sheet

-- Full (PDF) Data
Sheet

-- Full (PDF) Data
Sheet

-- Full (PDF) Data
Sheet

-- Full (PDF) Data
Sheet

MAX1121: QuickView
MAX1122: QuickView
MAX1123: QuickView
MAX1124: QuickView
MAX1213: QuickView
MAX1214: QuickView - Free Samples
MAX1215: QuickView -- Free Samples
MAX19541: QuickView

-- Free Samples

MAX19542: QuickView -- Free Samples

12 of 12

http://www.maxim-ic.com/quick_view2.cfm/qv_pk/4156/ln/en
http://pdfserv.maxim-ic.com/en/ds/MAX1121.pdf
http://pdfserv.maxim-ic.com/en/ds/MAX1121.pdf
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/3895/ln/en
http://pdfserv.maxim-ic.com/en/ds/MAX1122.pdf
http://pdfserv.maxim-ic.com/en/ds/MAX1122.pdf
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/4079/ln/en
http://pdfserv.maxim-ic.com/en/ds/MAX1123.pdf
http://pdfserv.maxim-ic.com/en/ds/MAX1123.pdf
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/4080/ln/en
http://pdfserv.maxim-ic.com/en/ds/MAX1124.pdf
http://pdfserv.maxim-ic.com/en/ds/MAX1124.pdf
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/4384/ln/en
http://pdfserv.maxim-ic.com/en/ds/MAX1213.pdf
http://pdfserv.maxim-ic.com/en/ds/MAX1213.pdf
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/4769/ln/en
http://pdfserv.maxim-ic.com/en/ds/MAX1214.pdf
http://pdfserv.maxim-ic.com/en/ds/MAX1214.pdf
http://www.maxim-ic.com/samples/index.cfm?Action=Add&PartNo=MAX1214&ln=en
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/4768/ln/en
http://pdfserv.maxim-ic.com/en/ds/MAX1215.pdf
http://pdfserv.maxim-ic.com/en/ds/MAX1215.pdf
http://www.maxim-ic.com/samples/index.cfm?Action=Add&PartNo=MAX1215&ln=en
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/4555/ln/en
http://pdfserv.maxim-ic.com/en/ds/MAX19541.pdf
http://pdfserv.maxim-ic.com/en/ds/MAX19541.pdf
http://www.maxim-ic.com/samples/index.cfm?Action=Add&PartNo=MAX19541&ln=en
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/4556/ln/en
http://pdfserv.maxim-ic.com/en/ds/MAX19542.pdf
http://pdfserv.maxim-ic.com/en/ds/MAX19542.pdf
http://www.maxim-ic.com/samples/index.cfm?Action=Add&PartNo=MAX19542&ln=en

